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Goals

Construct transcript-compressible statistical estimators, that:
® answer arbitrary statistical queries accurately
e yield only polylogarithmic dependence on k in error bounds

® prevent analysts from overfitting



Remark: Above Threshold

AboveThreshold(7, q1,q2, .. .):

AllDone «+— FALSE
while not AllDone do
Accept the next query g;
Compute a; < ¢;(S)
if a; < T then
Return L
else
Return T
AllDone +— TRUE.
end if
end while




Let g; be a guess to query g;.
Given a fixed cutoff  and a sequence of tuples (q1,81), ---, (9k, 8k)
initialize an instance of AboveThreshold(n, 41, ..., k), with

Gi = 9i(D) — &il-

If we get the answer | we know g; is sample accurate with
accuracy 1.



OneWrongGuess

OneWrongGuess(1, (¢1, 1), (g2. 92), - - .)
Start an instance of AboveThreshold with threshold 7.
while AboveThreshold has not halted do
Accept the next query (qi, g;).
Feed AboveThreshold the query ¢;(S) = |g:(S) — gil.
if AboveThreshold returns 1 then
Return the answer a; = g;
end if
end while
Return the answer a; = Of (¢;) for b = log(1/n).




Theorem 1

For any threshold 0 < 1 < 1, OneWrongGuess is (n,0)-sample
accurate and transcript compressible to b(n, k) bits where

b(n, k) = log(k + 1) + log(1/7).



Proof of transcript compressibility

Proof

Let f be a post processing function which replaces (g;, g;) with
Gi(S) = |qi(S) — gi| and answers a; =1 with a; = g;. Then
OneWrongGuess is a composition of f(AboveThreshold) and
O] (q). We know that AboveThreshold is log(k + 1)-transcript
compressible, by the postprocessing Theorem, so is
f(AboveThreshold).

O/ (q) is transcript compressible to log(1/n) for b = log(1/n). By
the composition theorem OneWrongGuess is transcript
compressible to b(n, k) = log(k + 1) + log(1/n) bits.



Proof of accuracy

Every guess g; which does not exceed the threshold 7 is by
definition of AboveThreshold (7, 0)-accurate.

For the one query we cannot guess, we use the truncated estimator.
We already know that O/ (q) is (1/2,0)-accurate, which is
(n,0)-accurate for our choice of b. O



GuessAndCheck

GuessAndCheck(n, m, (g1, 91), (g2, 92),--.)
TimesWrong + 0
while TimesWrong < m do
Start an instance of AboveThreshold with threshold 7.
while AboveThreshold has not halted do
Accept the next query (g;, g:)-
Feed AboveThreshold the query ¢;(5) = [¢;(5) — gil-
if AboveThreshold returns | then
Return the answer a; = g;
end if
end while
Return the answer a; = OF (¢;) for b = log(1/7).
TimesWrong + TimesWrong + 1
end while




Theorem 2

For any n, m, GuessAndCheck is (,0)-sample accurate and
transcript compressible to b(n, k) bits where

b(n, k) = m(log(k + 1) + log(1/n)).

Proof
GuessAndCheck is just a composition of OneWrongGuess with
itself, m times. The result follows from the composition theorem. [J



Theorem 3
Fix a value of m and a value of §. Setting n = =,
GuessAndCheck(n, m) is (¢, 0)-accurate for any sequence of

compound queries (q;, g;) until it halts, where q; can be any
1/n-sensitive query, for:

c—0 (\/m(log(k) + log(n/m)) + Iog(k/5)> .

n



Proof

We have shown compressibility to

b(n, k) = m(log(k + 1) + log(1/n)) bits, and (7, 0)-sample
accuracy.

(¢, 0)-accuracy for

c=n+ \/(m(log(k +1)+ Iog(l/gg + 1) log(2) + log(k /)

follows from the transfer theorem for transcript compressibility.

O



Lemma 4
For any € > 0, any k statistical queries ®1, ..., 9, and for any
dataset S € X" thereisan S’ € X" with n’ = log(4k) ¢iych that-:

2¢2

ml_ax|E5[<D,-] — Esl[q),'” S €



Remark: Chernoff Bound

Theorem
Fix any distribution D, and any statistical query . Let S ~ D"

consist of a set of n points sampled i.i.d from D, with probability
1 — 6 over the sample:

[Es[®] — Ep[@]] < 'Oggi/‘”



Proof
Generate S’ by subsampling m points from S with replacement.

Under this sampling distirbution, E[®;] = Eg[®;] for each 1.
Apply a Chernoff bound with 6 = 1/2 to follow:

log (4k
max [Es[®/] — E5[®7]| < ng(m) <e



MedianQOracle

MedianOracle(q, ..., qx)

Initialize an instance of GuessAndCheck(n, m) with m = \fw and 1 = %

Initialize a version space &g = X" where n’ = h;(—:;‘l
fori=1tokdo
Given query g;, construct a guess g; = median ({g;(S") : " € S;_})
Feed the query (g:, g;) to GuessAndCheck and receive answer a;.
if a; = g; then
Sl S 5-571
else
S+ S\ {881 |a(5)—a| >n}
end if
Return answer a;.
end for




Theorem 5
For any 6 > 0, MedianOracle is (¢, )-accurate for any sequence
of k statistical queries where:

c=0 (log(lX! log(k))}/*/log(k) + Iog(n)>
N nl/4




Proof

MedianQOracle is a postprocessing of GuessAndCheck. So
(e,0)-accuracy for the queries asked before the algorithm halts
follows from the accuracy of GuessAndCheck.

We need to show that MedianOracle will answer all k queries and
never halt, this is equivalent to showing that |gi(S) — gi| < 7 for all
but m rounds.



tracking |S;]

by construction |So| = ||

in every round i we make a mistake, |S;| < |S;_1|/2, because
on these round |g; — qi(S)| > n and all sets S’ such that
|gi(S") — a;| > n are removed from §;.

by definition g; = median({g;(S’) : S’ € Sj_1}), so at least
half of the S’ in S; are removed.

by Lemma 4 we know that there is at least one S’ such that
lgi(S") — qi(S)| < n. Hence |S;] > 1 for every i.

with that the number of mistaken guesses can be at most
log(|So[) = n'log(|X]) = m



ReusableHoldout

ReusableHoldout(m, g1, ..., qx)
Randomly split the dataset S into two equal parts: a training set Sy and a holdout set Sy, each of
size n/2.

Initialize an instance of GuessAndCheck(n, m) on Sy with n = 27’"
for i =1to k do
Given query g;, construct a guess g; = ¢;(Sr)
Feed the query (g;, g;) to GuessAndCheck and receive answer a;.
Return answer a;.

end for




Theorem 6
Fix a value of m and a value of 6 > 0. ReusableHoldout is

(e,0)-accurate for any sequence of 1/n sensitive queries q; until it
halts, for:

c— 0 (\/m(log(k) + log(n/m)) + |og(k/5)> .

n



Previous definitions and theorems



truncated estimator

Definition: truncated estimator
Given a dataset S, the b-bit truncated estimator O/ (q) returns
q(S) truncated to b bits of binary precision.



Theorem 1 (Postprocessing for Transcript Compressibility) Suppose O : Q — R is b-transcript
compressible. Let f: QUR — QUR be an arbitrary stateful algorithm. Then, fo O is also b-transcript
compressible.

Proof First, observe that the transcript 7" = (g1, a1, . . ., 4k, ax) is compressible to b bits, because we
may view this as the outcome of an interaction between O and an analyst A’ that responds to query
¢; as A responds to query ¢;. Since compressibility is quantified over all data analysts A’, we know in
particular that for every S, there exists a set H 4/ of size |H 4| < 2 such that:

PrGT, (A, S,0,Q) € Hy] =1

Now define a set Hp 4 = {I' = (41, f(a1),....dx, f(ax)) : h € Hy'}. Note that |H; 4| < |[Ha| < 2%,
and GT,, 4(A, S, f 0 ©, Q) € Hy 4 if Pr[GT, 4(4, 5,0, Q) € H.]. So,

Pr[GTnk(A, S, fo0,Q) € Hyal =1

as desired. l



Theorem 2 (Composition for Transcript Compressibility) Suppose Oy : Q — R is transcript
compressible to by(n,ky) bits, and Oz : Q@ — R is transcript compressible to by(n, ky) bits. Then the
composition (O, Oy) is transeript compressible to b(n, ky + k2) = by (n, k1) + ba(n, ko) bits.

Proof Since Oy is by(n, ki)-transcript compressible, for any analyst A, we know there is a set H
of size |Ha| < 280"k such that for every S, Pr[GT,, (A,5,01,0) € Ha) = 1. Write T} =
(g1,a1,...,qr,,ak,) to denote the fraction of the transcript that has been generated after A inter-
acts with Oy, and write Ay, to denote analyst A at its internal state after it has finished interacting
with Oy. Since Oy is ba(n, ko)-transcript compressible, for any analyst Ap, , there is a set H. Az, of size

GenerateTranscript,, , 1, (A. S, (01,02), Q)
S is given to O.
for i =1 to k; do
A chooses a query g¢; € Q. g; is given to Oy.
O; generates an answer a; € [0, 1]. a; is given to A.
end for
fori=k +1toks+ ks do
A chooses a query g; € Q. g; is given to Oa.
O, generates an answer a; € [0,1]. a; is given to A.
end for
The transcript T = (q1,01, - - -, @k, +ko» Ok +ko) 1S OUtPUL

|[Haq | < 2b2(mk2) guch that for every S, Pr[GT, 1,(Ar,, S, 02, Q) € Hy,, ] = 1. Thus, we have that
T = (Ty,T) where T} € Hy, and T, € H 4;, - The number of such transeripts is at most:

Z |Har | < obi(rik) | gba(nik2) — gbi(n.ki)+b2(n,kz)
y 5
TheHa



Theorem 6 (Transcript Compressibility Transfer Theorem) For any §” > 0, a statistical esti-
mator O for statistical queries that is:

1. b(n, k)-compressible and

2. (¢',0")-sample accurate

is (€,8) accurate, where d = &' + 6" and

ol (b(n, k) + 1) In(2) + In(k/5")
L \/ 2n



