Description Lenght Bounds III

Philipp Goebels

May 28, 2019

Goals

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Construct transcript-compressible statistical estimators, that:

- answer arbitrary statistical queries accurately
- yield only polylogarithmic dependence on k in error bounds
- prevent analysts from overfitting

Remark: Above Threshold

AboveThreshold (T, q_1, q_2, \ldots) : AllDone \leftarrow FALSE while not AllDone do Accept the next query q_i Compute $a_i \leftarrow q_i(S)$ if $a_i < T$ then Return 1 else Return T AllDone \leftarrow TRUE. end if end while

Let g_i be a guess to query q_i . Given a fixed cutoff η and a sequence of tuples $(q_1, g_1), ..., (q_k, g_k)$ initialize an instance of AboveThreshold $(\eta, \hat{q}_1, ..., \hat{q}_k)$, with

$$\hat{q}_i = |q_i(\mathcal{D}) - g_i|.$$

If we get the answer \perp we know g_i is sample accurate with accuracy η .

OneWrongGuess

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

OneWrongGuess $(\eta, (q_1, g_1), (q_2, g_2), ...)$ Start an instance of **AboveThreshold** with threshold η . while **AboveThreshold** has not halted **do** Accept the next query (q_i, g_i) . Feed **AboveThreshold** the query $\hat{q}_i(S) = |q_i(S) - g_i|$. if **AboveThreshold** returns \perp then Return the answer $a_i = g_i$ end if end while Return the answer $a_i = \mathcal{O}_b^T(q_i)$ for $b = \log(1/\eta)$.

Theorem 1

For any threshold $0 < \eta \le 1$, **OneWrongGuess** is $(\eta, 0)$ -sample accurate and transcript compressible to b(n, k) bits where $b(n, k) = \log(k + 1) + \log(1/\eta)$.

Proof of transcript compressibility

Proof

Let f be a post processing function which replaces (q_i, g_i) with $\hat{q}_i(S) = |q_i(S) - g_i|$ and answers $a_i = \bot$ with $a_i = g_i$. Then **OneWrongGuess** is a composition of f(**AboveThreshold**) and $\mathcal{O}_b^T(q)$. We know that **AboveThreshold** is $\log(k + 1)$ -transcript compressible, by the postprocessing Theorem, so is f(**AboveThreshold**).

 $\mathcal{O}_b^T(q)$ is transcript compressible to $\log(1/\eta)$ for $b = \log(1/\eta)$. By the composition theorem **OneWrongGuess** is transcript compressible to $b(n, k) = \log(k + 1) + \log(1/\eta)$ bits.

Proof of accuracy

Every guess g_i which does not exceed the threshold η is by definition of **AboveThreshold** $(\eta, 0)$ -accurate.

For the one query we cannot guess, we use the truncated estimator. We already know that $\mathcal{O}_b^T(q)$ is $(1/2^b, 0)$ -accurate, which is $(\eta, 0)$ -accurate for our choice of b.

GuessAndCheck

```
GuessAndCheck(\eta, m, (q_1, g_1), (q_2, g_2), \ldots)
  TimesWrong \leftarrow 0
  while TimesWrong < m do
    Start an instance of AboveThreshold with threshold \eta.
    while AboveThreshold has not halted do
       Accept the next query (q_i, g_i).
       Feed AboveThreshold the query \hat{q}_i(S) = |q_i(S) - g_i|.
       if AboveThreshold returns | then
         Return the answer a_i = g_i
       end if
    end while
    Return the answer a_i = \mathcal{O}_b^T(q_i) for b = \log(1/\eta).
    TimesWrong \leftarrow TimesWrong + 1
  end while
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Theorem 2

For any η , m, **GuessAndCheck** is $(\eta, 0)$ -sample accurate and transcript compressible to b(n, k) bits where $b(n, k) = m(\log(k + 1) + \log(1/\eta)).$

Proof

GuessAndCheck is just a composition of **OneWrongGuess** with itself, m times. The result follows from the composition theorem. \Box

Theorem 3 Fix a value of m and a value of δ . Setting $\eta = \sqrt{\frac{m}{n}}$, **GuessAndCheck**(η , m) is (ϵ , δ)-accurate for any sequence of compound queries (q_i , g_i) until it halts, where q_i can be any 1/n-sensitive query, for:

$$\epsilon = O\left(\sqrt{rac{m(\log(k) + \log(n/m)) + \log(k/\delta)}{n}}
ight)$$

Proof

We have shown compressibility to $b(n,k) = m(\log(k+1) + \log(1/\eta))$ bits, and $(\eta, 0)$ -sample accuracy. (ϵ, δ) -accuracy for

$$\epsilon = \eta + \sqrt{\frac{\left(m(\log(k+1) + \log(1/\eta) + 1)\log(2) + \log(k/\delta)\right)}{2n}}$$

follows from the transfer theorem for transcript compressibility.

Lemma 4

For any $\epsilon > 0$, any k statistical queries $\Phi_1, ..., \Phi_k$ and for any dataset $S \in \mathcal{X}^n$, there is an $S' \in \mathcal{X}^{n'}$ with $n' = \frac{\log(4k)}{2\epsilon^2}$ such that:

$$\max_{i} |\mathbb{E}_{\mathcal{S}}[\Phi_{i}] - \mathbb{E}_{\mathcal{S}'}[\Phi_{i}]| \leq \epsilon$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Remark: Chernoff Bound

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem

Fix any distribution \mathcal{D} , and any statistical query Φ . Let $S \sim \mathcal{D}^n$ consist of a set of n points sampled i.i.d from \mathcal{D} , with probability $1 - \delta$ over the sample:

$$|\mathbb{E}_{\mathcal{S}}[\Phi] - \mathbb{E}_{\mathcal{D}}[\Phi]| \leq \sqrt{\frac{\log(2/\delta)}{2n}}$$

Proof

Generate S' by subsampling m points from S with replacement. Under this sampling distirbution, $\mathbb{E}[\Phi_i] = \mathbb{E}_S[\Phi_i]$ for each *i*. Apply a Chernoff bound with $\delta = 1/2$ to follow:

$$\max_{i} |\mathbb{E}_{\mathcal{S}}[\Phi_{i}] - \mathbb{E}_{\mathcal{S}}'[\Phi_{i}]| \leq \sqrt{\frac{\log(4k)}{2m}} \leq \epsilon.$$

MedianOracle

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

$$\begin{split} & \operatorname{MedianOracle}(q_1,\ldots,q_k) \\ & \operatorname{Initialize \ a \ instance \ of \ \mathbf{GuessAndCheck}(\eta,m) \ \text{with} \ m = \sqrt{\frac{n \log |\mathcal{X}| \ln(4k)}{2}} \ \text{and} \ \eta = \sqrt{\frac{m}{n}}. \\ & \operatorname{Initialize \ a \ version \ space} \ \mathcal{S}_0 = \mathcal{X}^{n'} \ \text{where} \ n' = \frac{\ln(4k)}{2\eta^2} \\ & \text{for} \ i = 1 \ \text{to} \ k \ \operatorname{do} \\ & \operatorname{Given \ query} \ q_i, \ \text{construct} \ a \ \operatorname{guess} \ g_i = \operatorname{median}\left(\{q_i(S') : S' \in \mathcal{S}_{i-1}\}\right) \\ & \operatorname{Feed \ the \ query} \ (q_i, g_i) \ \text{to} \ \operatorname{GuessAndCheck} \ \text{and} \ \operatorname{receive} \ \operatorname{answer} \ a_i. \\ & \text{if} \ \hat{a}_i = g_i \ \text{then} \\ & \mathcal{S}_i \leftarrow \mathcal{S}_{i-1} \\ & \text{else} \\ & \mathcal{S}_i \leftarrow \mathcal{S}_{i-1} \setminus \{S' \in \mathcal{S}_{i-1} : |q_i(S') - a_i| > \eta\} \\ & \text{end \ if} \\ & \operatorname{Return \ answer} \ a_i. \\ & \text{end \ for} \end{split}$$

Theorem 5

For any $\delta > 0$, **MedianOracle** is (ϵ, δ) -accurate for any sequence of k statistical queries where:

$$\epsilon = O\left(\frac{\log(|\mathcal{X}|\log(k))^{1/4}\sqrt{\log(k) + \log(n)}}{n^{1/4}}\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof

MedianOracle is a postprocessing of **GuessAndCheck**. So (ϵ, δ) -accuracy for the queries asked before the algorithm halts follows from the accuracy of **GuessAndCheck**. We need to show that **MedianOracle** will answer all k queries and never halt, this is equivalent to showing that $|q_i(S) - g_i| \leq \eta$ for all but m rounds.

tracking $|S_i|$

- by construction $|\mathcal{S}_0| = |\mathcal{X}|^{n'}$
- in every round *i* we make a mistake, $|S_i| \le |S_{i-1}|/2$, because on these round $|g_i - q_i(S)| > \eta$ and all sets S' such that $|q_i(S') - a_i| > \eta$ are removed from S_i .
- by definition $g_i = \text{median}(\{q_i(S') : S' \in S_{i-1}\})$, so at least half of the S' in S_i are removed.
- by Lemma 4 we know that there is at least one S' such that $|q_i(S') q_i(S)| \le \eta$. Hence $|S_i| \ge 1$ for every *i*.
- with that the number of mistaken guesses can be at most $\log(|S_0|) = n' \log(|\mathcal{X}|) = m$

ReusableHoldout

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

ReusableHoldout (m, q_1, \ldots, q_k)

Randomly split the dataset S into two equal parts: a training set S_T and a holdout set S_H , each of size n/2.

Initialize an instance of **GuessAndCheck** (η, m) on S_H with $\eta = \sqrt{\frac{2m}{n}}$.

for i = 1 to k do

Given query q_i , construct a guess $g_i = q_i(S_T)$

Feed the query (q_i, g_i) to **GuessAndCheck** and receive answer a_i .

Return answer a_i .

end for

Theorem 6

Fix a value of m and a value of $\delta > 0$. **ReusableHoldout** is (ϵ, δ) -accurate for any sequence of 1/n sensitive queries q_i until it halts, for:

$$\epsilon = O\left(\sqrt{rac{m(\log(k) + \log(n/m)) + \log(k/\delta)}{n}}
ight)$$

.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Previous definitions and theorems

truncated estimator

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition: truncated estimator

Given a dataset S, the b-bit truncated estimator $\mathcal{O}_b^T(q)$ returns q(S) truncated to b bits of binary precision.

Theorem 1 (Postprocessing for Transcript Compressibility) Suppose $\mathcal{O} : \mathcal{Q} \to \mathcal{R}$ is b-transcript compressible. Let $f : \mathcal{Q} \cup \mathcal{R} \to \mathcal{Q} \cup \mathcal{R}$ be an arbitrary stateful algorithm. Then, $f \circ \mathcal{O}$ is also b-transcript compressible.

Proof First, observe that the transcript $T' = (\hat{q}_1, a_1, \ldots, \hat{q}_k, a_k)$ is compressible to *b* bits, because we may view this as the outcome of an interaction between \mathcal{O} and an analyst \mathcal{A}' that responds to query q_i as \mathcal{A} responds to query \hat{q}_i . Since compressibility is quantified over all data analysts \mathcal{A}' , we know in particular that for every *S*, there exists a set $H_{\mathcal{A}'}$ of size $|H_{\mathcal{A}'}| \leq 2^b$ such that:

 $\Pr[\mathbf{GT}_{n,k}(\mathcal{A}', S, \mathcal{O}, \mathcal{Q}) \in H_{\mathcal{A}'}] = 1$

Now define a set $H_{f,\mathcal{A}} = \{h' = (\hat{q}_1, f(a_1), \dots, \hat{q}_k, f(a_k)) : h \in H_{\mathcal{A}'}\}$. Note that $|H_{f,\mathcal{A}}| \le |H_{\mathcal{A}'}| \le 2^b$, and $\mathbf{GT}_{n,k}(\mathcal{A}, S, f \circ \mathcal{O}, \mathcal{Q}) \in H_{f,\mathcal{A}}$ if $\Pr[\mathbf{GT}_{n,k}(\mathcal{A}', S, \mathcal{O}, \mathcal{Q}) \in H_{\mathcal{A}'}]$. So,

 $\Pr[\mathbf{GT}_{n,k}(\mathcal{A}, S, f \circ \mathcal{O}, \mathcal{Q}) \in H_{f,\mathcal{A}}] = 1$

as desired.

Theorem 2 (Composition for Transcript Compressibility) Suppose $\mathcal{O}_1 : \mathcal{Q} \to \mathcal{R}$ is transcript compressible to $b_1(n, k_1)$ bits, and $\mathcal{O}_2 : \mathcal{Q} \to \mathcal{R}$ is transcript compressible to $b_2(n, k_2)$ bits. Then the composition $(\mathcal{O}_1, \mathcal{O}_2)$ is transcript compressible to $b(n, k_1 + k_2) = b_1(n, k_1) + b_2(n, k_2)$ bits.

Proof Since \mathcal{O}_1 is $b_1(n, k_1)$ -transcript compressible, for any analyst \mathcal{A} , we know there is a set $H_{\mathcal{A}}$ of size $|H_{\mathcal{A}}| \leq 2^{b_1(n,k_1)}$ such that for every S, $\Pr[\mathbf{GT}_{n,k_1}(\mathcal{A}, S, \mathcal{O}_1, \mathcal{Q}) \in H_{\mathcal{A}}] = 1$. Write $T_1 = (q_1, a_1, \ldots, q_{k_1}, a_{k_1})$ to denote the fraction of the transcript that has been generated after \mathcal{A} interacts with \mathcal{O}_1 , and write \mathcal{A}_{T_1} to denote analyst \mathcal{A} at its internal state after it has finished interacting with \mathcal{O}_1 . Since \mathcal{O}_2 is $b_2(n, k_2)$ -transcript compressible, for any analyst \mathcal{A}_{T_1} , there is a set $H_{\mathcal{A}_{T_1}}$ of size

GenerateTranscript_{n,k1+k2}($\mathcal{A}, \mathcal{S}, (\mathcal{O}_1, \mathcal{O}_2), \mathcal{Q}$) S is given to \mathcal{O} . for i = 1 to k_1 do \mathcal{A} chooses a query $q_i \in \mathcal{Q}$. q_i is given to \mathcal{O}_1 . \mathcal{O}_1 generates an answer $a_i \in [0, 1]$. a_i is given to \mathcal{A} . end for for $i = k_1 + 1$ to $k_1 + k_2$ do \mathcal{A} chooses a query $q_i \in \mathcal{Q}$. q_i is given to \mathcal{O}_2 . \mathcal{O}_2 generates an answer $a_i \in [0, 1]$. a_i is given to \mathcal{A} . end for The transcript $T = (q_1, a_1, \dots, q_{k_1+k_2}, a_{k_1+k_2})$ is output

 $|H_{\mathcal{A}_{T_1}}| \leq 2^{b_2(n,k_2)}$ such that for every S, $\Pr[\mathbf{GT}_{n,k_2}(\mathcal{A}_{T_1}, S, \mathcal{O}_2, \mathcal{Q}) \in H_{\mathcal{A}_{k_1}}] = 1$. Thus, we have that $T = (T_1, T_2)$ where $T_1 \in H_{\mathcal{A}}$, and $T_2 \in H_{\mathcal{A}_{T_1}}$. The number of such transcripts is at most:

$$\sum_{T_1 \in H_{\mathcal{A}}} |H_{\mathcal{A}_{T_1}}| \le 2^{b_1(n,k_1)} \cdot 2^{b_2(n,k_2)} = 2^{b_1(n,k_1) + b_2(n,k_2)}$$

Theorem 6 (Transcript Compressibility Transfer Theorem) For any $\delta'' > 0$, a statistical estimator \mathcal{O} for statistical queries that is:

- 1. b(n,k)-compressible and
- 2. (ϵ', δ') -sample accurate
- is (ϵ, δ) accurate, where $\delta = \delta' + \delta''$ and

$$\epsilon = \epsilon' + \sqrt{\frac{(b(n,k)+1)\ln(2) + \ln(k/\delta'')}{2n}}$$