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@ Chernov: X iid, in [0,1]

P(iX,- —EX; > 6) < exp(—2¢2/(2n))
i=1



Statistical queries

o A statistical query is a (measurable) function ¢ : & — [0, 1].

@ Notation: D is some probability distribution on X.
Population mean:

d(D) := Expp(x)

S ~ D" iid data sample consisting of Xy, ..., X,,.
Empirical mean:

4(8) = = 3" 6(X)
i=1



M, the mediating mechanism

How do we model the situation of interest?
e A's aim: Find out features of D: ¢1(D), ..., k(D).
@ Problem: Neither D is known, nor is S directly accessible.

@ A interacts with a mechanism M, which returns answers
ai, ..., ak to his queries.
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M, the mediating mechanism

How do we model the situation of interest?
e A's aim: Find out features of D: ¢1(D), ..., ok (D).
@ Problem: Neither D is known, nor is S directly accessible.

@ A interacts with a mechanism M, which returns answers
ai, ..., ak to his queries.

If M is in charge of some data base with sensitive information, A
will not always get all the information.
Examples of M:

1. Empirical mechanism: Returns ¢;(S) for ¢;.

2. Privatizing mechanism: Returns ¢;(S) + L; for ¢;. L; is some
Laplace noise.



Which question? Whose answer?

A theoretical measure of performance is given by

errs(M, A) :jimaxK |$;(D) — aj

e

We say M is («, 3)-accurate for K queries on iid data for every
analyst A if
P(errs(M,A) <a) >1-p.

Sometimes we look at expected errors such as
supsup Eerrs(M, A).
D A

or even
inf supsup Eerrs(M, A).
M D A



Example for expected errors

The next Theorem demonstrates that a high accuracy is feasable
via the empirical mechanism Menmp.
Theorem 3:

Let D be any probability distribution on X',¢1, ..., ok (data
independent) statistical queries of the analyst A and S ~ D" iid
data. Then with probability > 1 — ¢

errs(Memp, A) < 4/ IOg(;nK/é).




Proof:
Last time we have seen that with probability > 1 — « for any query

6(8) — o(D)| < | B
Choosing a = §/K we see that
P(3 € {L,... K} 1 [65(S) - (D) > 'og(;nK/‘s))
K
SR CORICE ogCRy < 5



Under the Assumptions of Theorem 3:

Iog(2K)>

Eerrs(Memp, A) = O( >




Stochastic optimization

Statistical models are often determined by a parameter
w € © C RY, which can be expressed as the minimizer of an
averaged loss function, i.e.

w* = argminycoExpl(w, x).

How do we find out w*? A typical estimator is the empirical
minimizer .,
Wemp = argminyce Zﬁ(w, Xi).
i=1
This srategy can only be successful if £ is "well behaved” in some
fashion.



Stochastic optimization

e ©C{u:|u|l <R}
@ Forall xe X

[(u; x) —l(v;x)| < |u—v|C u,veEBO.

v

Under the above assumption for iid data S ~ D" it holds with
probability > 1 — ¢:

sug \ Zﬁ(u;Xi) — Expl(u; x)| < 6RC d|°g,(7”/5).
ued =1




Convex optimization

Theorem 5 suggests minimizing the empirical loss

w* = argmin,, Zf(w; Xi).
i=1

How difficult is minimizing this?
For the broad class of convex optimization problems this task is
efficiently solvable.

Subdifferential:

The subdifferential of a function f : RY 5 © — R in a point x is
defined as

Of(x) = {g eRY: f(x)+ < g,y — x >< f(y)Vy € ©}.




Convex optimization

O A set © C RY is called convex if it equals a (possibly infinite)
intersection of halfspaces.

O Let © C RY be a convex set. A function f : © — R is convex
on © iff f(x) # 0 for all x € ©.

Remarks:

Let © be closed and convex. The projection
Me(x) := argmin,, cgl|x — w||

is well defined for all x € RY. Furthermore for all w € © and
y € RY projection reduces distances, i.e.

Mo (y) —wll < lly — wl|




Projected Gradient Descent

Let f : © — R be a function and © a convex subset of R?. The
method of PGD is defined as follows:
1. Choose some xg € ©, 7 >0and T € N.
. Set yt41 = x¢ —ngt, where gi € 0f(x)

2
3. Set Xt41 = ﬂ@(ytH).
4. If t4+ 1= T stop and output x7 . Else set t =t + 1 and

repeat 2.

Theorem 10:

Let © C {u: ||ul| < R} be closed, convex and f : © — R be
convex and C-lipschitz. If we run PGD T times with
n=R/(CVT), then

T

f(%ZXJ — f(x*) < RC/VT,

where x* € © is the minimizer of f.




