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Concentration inequalities: Nuts and bolts
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Chebychev:

P
(∣∣X − EX

∣∣√
var(X )

≥ ε
)
≤ 1

ε2

Chernov: Xi iid, in [0, 1]

P
( n∑

i=1

Xi − EXi ≥ ε
)
≤ exp(−2ε2/(2n))
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Statistical queries

A statistical query is a (measurable) function φ : X → [0, 1].

Notation: D is some probability distribution on X .
Population mean:

φ(D) := Ex∼Dφ(x)

S ∼ Dn iid data sample consisting of X1, ...,Xn.
Empirical mean:

φ(S) =
1

n

n∑
i=1

φ(Xi )
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M, the mediating mechanism

How do we model the situation of interest?

A’s aim: Find out features of D: φ1(D), ..., φK (D).

Problem: Neither D is known, nor is S directly accessible.

A interacts with a mechanism M, which returns answers
a1, ..., aK to his queries.
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M, the mediating mechanism

How do we model the situation of interest?

A’s aim: Find out features of D: φ1(D), ..., φK (D).

Problem: Neither D is known, nor is S directly accessible.

A interacts with a mechanism M, which returns answers
a1, ..., aK to his queries.

If M is in charge of some data base with sensitive information, A
will not always get all the information.
Examples of M:

1. Empirical mechanism: Returns φj(S) for φj .

2. Privatizing mechanism: Returns φj(S) + Lj for φj . Lj is some
Laplace noise.
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Which question? Whose answer?

A theoretical measure of performance is given by

errS(M,A) = max
j=1,...,K

|φj(D)− aj |

We say M is (α, β)-accurate for K queries on iid data for every
analyst A if

P
(
errS(M,A) ≤ α

)
≥ 1− β.

Sometimes we look at expected errors such as

sup
D

sup
A

EerrS(M,A).

or even
inf
M

sup
D

sup
A

EerrS(M,A).
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Example for expected errors

The next Theorem demonstrates that a high accuracy is feasable
via the empirical mechanism Memp.

Theorem 3:

Let D be any probability distribution on X ,φ1, ..., φK (data
independent) statistical queries of the analyst A and S ∼ Dn iid
data. Then with probability ≥ 1− δ

errS(Memp,A) ≤
√

log(2K/δ)

2n
.
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Theorem 3:

Proof:
Last time we have seen that with probability ≥ 1− α for any query

|φ(S)− φ(D)| ≤
√

log(2/α)

2n
.

Choosing α = δ/K we see that

P
(
∃j ∈ {1, ...,K} : |φj(S)− φj(D)| >

√
log(2K/δ)

2n

)
≤

K∑
j=1

P
(
|φj(S)− φj(D)| >

√
log(2K/δ)

2n

)
≤ δ.

�
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Theorem 3:

Corollary:

Under the Assumptions of Theorem 3:

EerrS(Memp,A) = O
(√ log(2K )

2n

)
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Stochastic optimization

Statistical models are often determined by a parameter
w ∈ Θ ⊂ Rd , which can be expressed as the minimizer of an
averaged loss function, i.e.

w∗ = argminw∈ΘEx∼D`(w , x).

How do we find out w∗? A typical estimator is the empirical
minimizer

ŵemp = argminw∈Θ

n∑
i=1

`(w ,Xi ).

This srategy can only be successful if ` is ”well behaved” in some
fashion.
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Stochastic optimization

Assumptions:

Θ ⊂ {u : ‖u‖ ≤ R}.
For all x ∈ X

|`(u; x)− `(v ; x)| ≤ |u − v |C u, v ∈ Θ.

Theorem 5:

Under the above assumption for iid data S ∼ Dn it holds with
probability ≥ 1− δ:

sup
u∈Θ
|

n∑
i=1

`(u;Xi )− Ex∼D`(u; x)| ≤ 6RC

√
d log(n/δ)

n
.
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Convex optimization

Theorem 5 suggests minimizing the empirical loss

ŵ∗ = argminw

n∑
i=1

`(w ;Xi ).

How difficult is minimizing this?
For the broad class of convex optimization problems this task is
efficiently solvable.

Subdifferential:

The subdifferential of a function f : Rd ⊃ Θ→ R in a point x is
defined as

∂f (x) := {g ∈ Rd : f (x)+ < g , y − x >≤ f (y)∀y ∈ Θ}.
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Convex optimization

Convexity:

1 A set Θ ⊂ Rd is called convex if it equals a (possibly infinite)
intersection of halfspaces.

2 Let Θ ⊂ Rd be a convex set. A function f : Θ→ R is convex
on Θ iff ∂f (x) 6= ∅ for all x ∈ Θ.

Remarks:

Let Θ be closed and convex. The projection

ΠΘ(x) := argminw∈Θ‖x − w‖

is well defined for all x ∈ Rd . Furthermore for all w ∈ Θ and
y ∈ Rd projection reduces distances, i.e.

‖ΠΘ(y)− w‖ ≤ ‖y − w‖
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Projected Gradient Descent

Let f : Θ→ R be a function and Θ a convex subset of Rd . The
method of PGD is defined as follows:

1. Choose some x0 ∈ Θ, η > 0 and T ∈ N.

2. Set yt+1 = xt − ηgt , where gt ∈ ∂f (xt)

3. Set xt+1 = ΠΘ(yt+1).

4. If t + 1 = T stop and output xT . Else set t = t + 1 and
repeat 2.

Theorem 10:

Let Θ ⊂ {u : ‖u‖ ≤ R} be closed, convex and f : Θ→ R be
convex and C -lipschitz. If we run PGD T times with
η = R/(C

√
T ), then

f
( 1

T

T∑
t=1

xt
)
− f (x∗) ≤ RC/

√
T ,

where x∗ ∈ Θ is the minimizer of f .
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