

Fast Homomorphic Evaluation of Deep Neural Networks

FHE–DiNN — Privacy-Preserving Image Classification in the Cloud

Realworld Cryptanalysis Seminar, RUB, 17.7.2018

Florian Bourse, Michele Minelli, <u>Matthias Minihold</u>, and Pascal Paillier Cryptology and IT-Security, Ruhr-Universität Bochum

- 1 Privacy-Preserving Predictions by the Cloud
 - Machine Learning as a Service (MLaaS)
 - Machine Learning & Neural Network Basics
 - FHE-friendly Discretized Neural Networks (DiNNs)
- 2 Main Idea: Activation During FHE Bootstrapping
 Adapting the TFHE Framework for Fast Bootstrapping
- 3 Experiments: Digit Classification with FHE–DiNN
 MNIST Digit Recognition & Classification
- 4 Conclusions and Future Directions

Machine Learning as a Service (MLaaS)

4/21

User submits x and recovers $\mathcal{M}(x)$; the prediction.

Machine Learning as a Service (MLaaS)

User submits Enc(x) and recovers $Enc(\mathcal{M}(x))$; the encrypted prediction.

Machine Learning as a Service (MLaaS)

RUB

User submits Enc(x) and recovers $Enc(\mathcal{M}(x))$; the encrypted prediction.

Privacy input & output data is encrypted (user has only key)

Efficiency is a central practical issue

Goal: FHE–DiNN — fast homomorphic evaluation of neural networks.

Deep Neural Network

6/21

Close-up on Neuron

Computation for every neuron:

 $y = \varphi\left(\sum_{i} w_{i} x_{i}\right),$

where φ is an activation function.

FHE-friendly Discretized Neural Networks

9/21

Goal: FHE-friendly model of neural network: $x_i, w_i, y \in \mathbb{Z}$.

Definition (DiNN)

A neural network whose layers have inputs in $\{-I, \ldots, I\} \subseteq \mathbb{Z}$, weights in $\{-W, \ldots, W\} \subseteq \mathbb{Z}$, for $I, W \in \mathbb{N}$, and each neuron's activation function maps the weighted sum to integer values in $\{-I, \ldots, I\} \subseteq \mathbb{Z}$.

- ► Not restrictive as it seems as, e.g., binarized NNs perform well;
- trade-off between size and performance;
- conversion is straight-forward easy.

Main Idea: Activation During FHE Bootstrapping

Combine necessary refreshing with desirable activation function:

Figure: Several neural network activation functions and our choice φ_0 .

$$\operatorname{Enc}(z) \to \operatorname{Enc}(f(z)) \to \ldots$$

Close-up on a single neuron: two steps

 $\operatorname{Enc}(x_1)$

Each neuron computes Enc(f(w, x)), *e.g.* $Enc(sign(\langle w, x \rangle))$:

- 1. Compute inner product $\sum_{i} w_i \text{Enc}(x_i)$ (linear homomorphic)
- 2. Bootstrap encryption of activated result (fully homomorphic)

Adapting TFHE framework for fast bootstrapping

We use Torus Fully Homomorphic Encryption framework ¹ on $\mathbb{T} := \mathbb{R}/\mathbb{Z}$.

Security assumption in TFHE

Hardness of Learning with Errors (LWE) on $\mathbb{T}:$

$$(\mathbf{a}, \langle \mathbf{s}, \mathbf{a}
angle + e \mod 1) \stackrel{c}{pprox} (\mathbf{a}, \mathbf{u}) \in \mathbb{T}^{n+1},$$

where $e \leftarrow \chi_{\alpha}$, $\mathbf{s} \leftarrow \{0, 1\}^n$, $\mathbf{a}, \mathbf{u} \leftarrow \mathbb{T}^n$ with error parameter α .

We also use other torus-based schemes allowing performance increase:

- ► TLWE (for encrypting polynomials $\mathbb{T}[X]$)
- ► TGSW ('matrix TLWE'; roughly equivalent to GSW construction)

¹[CGGI16,CGGI17]

Fast Homomorphic Evaluation of Deep Neural Networks || Realworld Cryptanalysis Seminar, RUB || 17.7.2018

- 1. Combining implementations of Bootstrapping and Activation
- 2. Reducing bandwidth usage by Packing ciphertexts
- 3. Moving internal operation order, i.e., when to do a Keyswitch
- 4. Reparametrizing message space between neural network layers
- 5. Optimizing alternative implementation of BlindRotate

Goal Packing: encrypt polynomial $\mathbb{T}[X]$ instead of \mathbb{T} scalars: $c(X) = \mathsf{TLWE}.\mathsf{Encrypt}\left(\sum_{i} x_{i} X^{i}\right).$

Idea Redefine and pack (clear) weights in hidden layers: $w(X) := \sum_{i} w_i X^{-i}$.

Effect Constant term of $c(X) \cdot w(X) \in \mathbb{T}[X]$ is $\sum_i w_i x_i \in \mathbb{T}$.

- 1. Combining implementations of Bootstrapping and Activation
- 2. Reducing bandwidth usage by Packing ciphertexts
- 3. Moving internal operation order, i.e., when to do a Keyswitch
- 4. Reparametrizing message space between neural network layers
- 5. Optimizing alternative implementation of BlindRotate

Goal Reduce LWE dimension, ensuring security level, to optimize memory, efficiency, bootstrapping-key's size, final noise, and number of expensive external products.

Idea Bootstrapping := KeySwitch ► BlindRotate ► Extract

Effect Less noise; size n < N is used only for bootstrapping

14/21

- 1. Combining implementations of Bootstrapping and Activation
- 2. Reducing bandwidth usage by Packing ciphertexts
- 3. Moving internal operation order, i.e., when to do a Keyswitch
- 4. Reparametrizing message space between neural network layers
- 5. Optimizing alternative implementation of BlindRotate

Goal Dynamically change the message space to reduce errors.

Idea For B_{ℓ} , an upper bound on the sum in layer $\ell + 1$, define:

$$extsf{testVector}(X) = rac{-1}{2B_\ell+1}\sum_{i=0}^{N-1}X^i$$

Effect Less slices, hence less inaccurate decisions when rounding.

- 1. Combining implementations of Bootstrapping and Activation
- 2. Reducing bandwidth usage by Packing ciphertexts
- 3. Moving internal operation order, i.e., when to do a Keyswitch
- 4. Reparametrizing message space between neural network layers
- 5. Optimizing alternative implementation of BlindRotate

We unfold^{*a*} the loop for computing $X^{\langle \vec{s}, \vec{a} \rangle}$ in BlindRotate.

Goal Trade-off off-line pre-processing for on-line speed.

Idea Windowed processing & using algebraic keys-relations.

Effect Larger bootstrapping key traded for faster execution.

^aFollowing [ZYL⁺17]

Digit Recognition & Classification

RUB

We showcase a solution to the problem of **blind** digit recognition.

Dataset: MNIST (60000 images in training set + 10000 in test set).

Fast Homomorphic Evaluation of Deep Neural Networks || Realworld Cryptanalysis Seminar, RUB || 17.7.2018 16/21

FHE–DiNN Demo: Input and Neural Network

17/21

Figure: FHE–DiNN processes an MNIST image given a pre-trained neural network with 784:100:10–topology. Edges are labeled with weights, connect output with input nodes, which are functionally dependent on previous ones.

FHE–DiNN Demo: Algorithm Step-by-step

RUB

Evaluation of a server's DiNN, i.e. 100 neurons in one hidden layer. Client Server

FHE–DiNN Demo: Algorithm Step-by-step

RUB

Evaluation of a server's DiNN, i.e. 100 neurons in one hidden layer.

Experimental results

RUB

Performance on (clear) inputs x

	Original NN	DiNN + hard_sigmoid	DiNN + sign
30 neurons	94.76%	93.76% (-1 %)	93.55% (-1.21%)
100 neurons	96.75%	96.62% (-0.13%)	96.43% (-0.32%)

Performance on (encrypted) inputs Enc(x)

	Acc.	Disagreements	Total wrong BS	when dis.	Time
30	93.71%	273 (105–121)	3383/300000	196/273	0.515 s
100	96.26%	127 (61–44)	9088/1000000	105/127	1.679 s
30 w	93.46%	270 (119–110)	2912/300000	164/270	0.491 s
100 w	96.35%	150 (66–58)	7452/1000000	99/150	1.640 s

window size w = 2

Fast Homomorphic Evaluation of Deep Neural Networks || Realworld Cryptanalysis Seminar, RUB || 17.7.2018 19/21

Conclusions and future directions

- Better DiNNs through refined conversion (+ retraining)
- GPU implementation for realistic timings
- Showcase more cognitive models (e.g., convolutional NNs, ...)
- Apply advanced crypto to other machine learning problems

Open Problems [1]

How to evaluate complex, non-linear functions such as $\max(x_1, x_2)$, hence ReLU $(x) = \max(0, x)$, or vectorial Softmax (\vec{x}) in FHE–DiNN?